Dbo24.ru

Домашний Мастер
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Химическая энергия

Химическая энергия

Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности.

Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.

Немного истории создания ХИТ

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Это важное свойство называется законом сохранения энергии.

Преобразование энергии тепла

Один из старейших с точки зрения освоения и самых важных для поддержания жизнедеятельности человека энергетических источников, без которых невозможно представить жизнь современного общества. В большинстве случаев тепло преобразуется в электроэнергию, причем простая схема такой трансформации не требует подключения промежуточных этапов. Однако в тепловых и атомных электростанциях в зависимости от условий их работы может применяться этап подготовки с переводом тепловой в механическую энергию, что требует дополнительных затрат. Сегодня все чаще для преобразования тепловой энергии в электричество используются термоэлектрические генераторы прямого действия.

Сам процесс трансформации происходит в специальном веществе, которое сжигается, выделяет тепло и в дальнейшем выступает источником генерации тока. То есть термоэлектрические установки могут рассматриваться как источники электроэнергии с нулевым циклом, так как их работа запускается еще до появления базовой тепловой энергии. В качестве основного ресурса выступают топливные элементы – как правило, газовые смеси. Они сжигаются, в результате чего происходит нагрев теплораспределительной металлической пластины. В процессе отвода тепла через специальный генераторный модуль с полупроводниковыми материалами происходит преобразование энергии. Электрический ток генерируется радиаторной установкой, подключенной к трансформатору или аккумулятору. В первом варианте энергия сразу поступает к потребителю в готовом виде, а во втором – накапливается и отдается по мере надобности.

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, во всем мире таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность — одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину КПД ветроустановок — 59,3 %, что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие самыми мощными на сегодня ветроэлектростанциями.

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.

Солнечная энергия – это отличный источник для таких процессов:

  • Пассивный обогрев и охлаждение дома. Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.
  • Нагрев воды с помощью солнечной энергии. Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.
  • Освещение улиц. Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.
Читать еще:  Полиэтиленовая дренажная труба – оптимальный вариант

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ –

ЛИЦЕЙ №4 ИМЕНИ ГЕРОЯ РОССИИ ГОРШКОВА Д.Е.

Проектная работа по физике на тему

«Преобразование электрической энергии в механическую. Сила Ампера»

Выполнил: ученик 8-а класса

Современный мир буквально напичкан электрическими машинами. Они приводят в движение массу механизмов: лифты в домах, насосы в колодцах и на нефтяных скважинах, эскалаторы в метро, троллейбусы и трамваи – список можно продолжать до бесконечности. Электрические машины, преобразующие электрическую энергию м механическую, или электродвигатели, могут выполнять различные функции, обладать достаточно большой мощностью, иметь сложную систему управления, получать питание от постоянного или переменного тока, но в основе их работы лежат одни и те же законы.

Меня очень заинтересовал вопрос, как же все это работает. Так родилась идея моего проекта.

Цель и задачи проекта

Целью моего проекта было понять, как же устроен электродвигатель, и что происходит внутри него во время работы.

Для этого необходимо было решить следующие задачи :

  1. Разобраться, что за физическое явление лежит в основе работы электродвигателя.
  2. Собрать простую действующую модель электродвигателя, наглядно иллюстрирующую принцип его работы.

Сила Ампера – в основе работы электродвигателя

Вращение любого электродвигателя основано на одном и том же физическом явлении – силе Ампера. Она действует на проводник с током, если тот помещён во внешнее магнитное поле.

Значение этой силы определяется по формуле:

где В – магнитная индукция;

L — длина проводника;

α – угол между направлением магнитной индукции и направлением тока.

Из тригонометрии становится ясно: для достижения максимальной силы необходимо ориентировать проводник перпендикулярно линиям магнитной индукции, в этом случае sin α становится равным единице и формула упрощается:

Правило левой руки

Направление силы Ампера определяется по правилу левой руки (рис.1). Если линии магнитного поля направлены в ладонь, а четыре пальца указывают направление тока, то большой палец покажет направление силы Ампера.

Рис. 1 Принцип определения направления силы Ампера по правилу

Что такое электродвигатель

Любой электродвигатель – это, по сути, множество подвижных проводников с током, помещённых в магнитное поле. В зависимости от того, каким образом создаются ток и магнитное поле, различают электродвигатели постоянного и переменного тока. Они потребляют электричество из сети и за счёт этого вращают ротор, на одном валу с которым вращается подвижная часть неэлектрического механизма. К сожалению, часть электрической энергии при том теряется: в виде тепла в окружающую среду уходит 2-10% мощности любого электродвигателя (рис. 2)

Модель двигателя — своими руками

Я решил попробовать своими руками собрать наиболее простой по конструкции электродвигатель постоянного тока. В литературе по данной теме говорится, что добиться движения проводника в магнитном поле несложно: достаточно подключить его к плюсу и минусу обычной батарейки и поднести к нему магнит – провод дёрнется. Но для поддержания длительного вращения ротора мне потребовалось немного фантазии.

Я согнул проводник, как это показано на рис. 3, и поместил его в поле магнита так, чтобы проводник (назовём его ротором) мог свободно вращаться в шарнирах, имея с ними электрический контакт. Шарниры я сделал из другого провода, согнув его круглогубцами в колечко. Изоляцию с шарнира пришлось снять. Этот же провод будет выполнять функцию стоек. Как только я подключил батарейку к такой цепи, по ней потек ток и возникла сила Ампера F A (рис. 4).

Под действием этой силы проводник повернулся на четверть оборота из нижнего положения в среднее (рис. 5) и даже прошел его, но та же сила Ампера вернула его обратно в среднее положение, и вращение прекратилось.

Мне же нужно было обеспечить продолжительное вращение, а значит, надо заставить силу изменить своё направление. Согласно правилу левой руки, можно сделать это двумя способами: поменять направление магнитной индукции или поменять направление тока.

Первый способ осуществить трудно. Он подразумевает переворачивание магнита на 180 градусов, для чего к нему надо приложить механическую энергию извне. Провернуть магнит несколько раз рукой несложно, но делать это надо постоянно. Можно, конечно, заставить работать ротор, но моя задача – из электрической энергии получить механическую – это как раз конечная цель работы, а не средство.

Второй способ — ритмично менять концы правого и левого проводников, поочерёдно касаясь ими противоположных полюсов батарейки. Это легче, чем переворачивать магнит, но тоже неудобно. К тому же необходима очень высокая скорость переключения, справиться с которой человеку не под силу. Важно и то, что менять направление тока надо не только быстро, но ещё и синхронно с вращением проводника. Другими словами, изменение направления тока должно происходить в строго определённый моменты времени, когда проводник проходит среднее положение.

А что, если заставить саму вращающуюся часть менять полюса? В промышленных электродвигателях для этой цели применяют особые шарниры. Такой усовершенствованный шарнир (рис. 6) получил название «щёточно-коллекторный узел». Он состоит из двух неподвижных контактов в виде скруглённых пластин коллектора. На контакты щёток проходит постоянный ток из внешней сети. Щётки плотно прижаты к подвижному коллектору и обеспечивают электрический контакт. Подвижные контакты жёстко соединены с вращающейся рамкой и дважды за полный оборот меняют в ней направление тока.

Читать еще:  Размеры и характеристики газосиликатных блоков

Изготовить такую конструкцию самому мне показалось очень сложно, поэтому пришлось поступить иначе. Вместо того, чтобы чередовать полярность тока с плюса на минус и обратно, необходимо заставить ток ритмично возникать и пропадать. Для этого можно зачистить изоляцию подвижного проводника (рис. 7).

Сначала ротор будет опираться на шарнир со стороны оголённого металла, и в эти моменты через проводник потечёт ток. При повороте на 90 0 между проводником ротора и шарниром будет находиться слой изоляции, препятствующий протеканию тока. Но затем мне показалось, более удобным зачистить изоляцию по всей окружности проводника, а затем покрыть часть поверхности трансформаторным лаком. Легко сделать это можно, частично погрузив проводник в пластилин.

Батарейки я взял пальчиковые, напряжением 1,5 вольт каждая. Для удобства поместил их в специальный держатель. Магнит потребовался достаточно мощный – с магнитной индукцией порядка 1 тесла. Его можно положить на батарейку. Желательно, чтобы проводник был с эмалевой изоляцией (обычно она окружает проводник в виде тонкого прозрачного слоя).

Диаметр проводника должен быть около 0,8 – 1 мм. Это, с одной стороны, позволит нужным образом счистить изоляцию, а с другой – придаст конструкции жёсткость. Подвижный проводник я немного доработал: вместо одного полувитка намотал несколько витков в виде кольца (рис. 8).

Конструкцию я смонтировал на устойчивом основании. При этом стойки можно воткнуть прямо в дощечку, заранее просверлив в ней отверстия. По-моему, эти усилия не пропали даром, цель достигнута: устройство демонстрирует проявление силы Ампера, действующей на проводник в магнитном поле. Иными словами, я построил простейшую модель преобразователя электрической энергии в механическую работу, то есть электродвигатель.

  1. В работе исследован принцип действия электрического двигателя.
  2. Построена простейшая действующая модель, наглядно иллюстрирующая принцип действия электродвигателя.
  3. Разработанная модель может быть при необходимости использована на уроках физики в качестве наглядного пособия по теме «Электричество»

Как правило, формы энергии являются либо потенциальными, либо кинетическими.

Формы потенциальной энергии хранятся в том числе химическом, гравитационном, механическом и ядерном виде.

Формы кинетической энергии используются для выполнения различных работ и находятся в электрическом, химическом, электрохимическом, тепловом, электромагнитном виде.

Вот кратко описаны некоторые виды энергии, а также преимущества их применения.

Электрическая

Электрическая энергия – возникает за счет потока электронов между атомами вещества проводника при приложении электрического поля. В отличие от других источников, электричество является вторичным источником энергии. Мы должны использовать другой вид энергии (например, уголь) для производства электроэнергии.

Электростанция – это совокупность установок, оборудования и аппаратуры где другие виды энергии, например уголь, природный газ, гидроэнергия и ядерная превращаются в электроэнергию для передачи в места применения по назначению.

Электричество иногда называют энергоносителем, потому что это хорошо зарекомендовавший себя, эффективный и безопасный способ перемещения энергии из одного места в другое. Кроме того, оно может быть удобно использовано для выполнения многих задач. По мере роста мирового населения мы используем больше электроэнергии для нашей повседневной деятельности, а также больше технологий и инноваций для многочисленных применений. В результате спрос на мировую электроэнергию постоянно растет.
Электрическая мощность может быть вычислена путем умножения напряжения на ток.

Кинетическая

Кинетическая энергия имеется у объекта который двигается. Мы можем рассмотреть такой объект, как пуля, летящая по воздуху. Пуля обладает “кинетической энергией” за счет того, что она находится в движении относительно другой пули, которая неподвижна.
Кинетическая энергия рассчитывается следующим образом: E (кинетическая) =1/2 mv 2 , где m-масса; v-скорость.

Мы используем эти виды энергии для двух основных применений:

  1. Она легко доступна в движущихся объектах, поскольку все, что нужно, – это движение.
  2. Кинетическая чиста и не загрязняет окружающую среду.

Потенциальная

Потенциальная или накопленная энергия, – это способность системы выполнять работу, обусловленную ее положением или внутренней упругой структурой.

Например, гравитационная потенциальная энергия – запасенная и определяется положением объекта в гравитационном поле. Наша земная гравитация необходима для потенциальной гравитационной энергии.

Гравитационная потенциальная энергия Е (потенциальная) = mgh, где Е – потенциальная в джоулях; m-масса (кг); g-сила тяжести (м/с 2 ); h-высота (м).

Потенциальная энергия пружины запасена в пружине.
Е =1/2 kx 2 , где Е-потенциальная энергия пружины; k-постоянная силы пружины; x-расстояние от равновесия.

Мы используем эти виды энергии для трех основных применений:

  1. Потенциальная практически свободна (например, энергия пружины).
  2. Гораздо более постоянна и надежна, чем ветровая, солнечная энергия или сила волны.
  3. Отсутствие произведенных отхода или загрязнения.

Тепловая

Тепловая энергия – внутренняя, присутствующая в системе в силу разницы температур с окружающей средой.

Температура системы – это мера того, сколько тепловой энергии она имеет. Чем выше температура, тем быстрее молекулы движутся и “вибрируют”.

Тепловая может быть получена путем сжигания ископаемого топлива (уголь, нефть, природный газ) или биомассы (например, древесина). Она также может быть получена из пара в геотермальной системе или через ядерные реакции на атомной станции.

Мы используем эти виды энергии для следующих основных применений:

  1. Используется для промышленного производства электроэнергии и доступна по всему миру в большинстве областей.
  2. Она может обеспечить непрерывность, имеет надежные ресурсы, которые не зависят от погоды (за исключением солнечной тепловой).

Химическая

Химическая энергия – это форма потенциальной, связанная со структурным расположением атомов или молекул, которая существует из-за сил притяжения (химической связи), действующих между различными частями каждой молекулы.

Химическая энергия вещества может быть преобразована в другие виды энергии с помощью процесса, называемого химической реакцией.
Например, глюкоза в нашем собственном теле обладает ресурсом, потому что глюкоза высвобождает энергию при химическом взаимодействии с кислородом. Мы все используем эту энергию, чтобы генерировать силу и выделять тепло. Батареи, которые питают все наши мобильные телефоны, ископаемое топливо, которое мы потребляем каждый день в наших транспортных средствах и электростанциях, все это связано с применением химической работы.

Читать еще:  Особенности обрешетки крыши

Мы используем химическую энергию для следующих основных преимуществ:

  1. Химическая энергия используется нашими собственным организмом каждый день.
  2. Она является одним из наиболее эффективных источников для хранения и использования.
  3. Последние достижения в области химической энергетики привели к созданию долговечных аккумуляторных батарей и топливных элементов.

Электрохимическая

Электрохимическая энергия – потенциальная, хранящаяся в батарее или электрическом элементе, где также участвуют как химическая так и электричество. Следовательно, эти виды энергии называют электрохимическими. Электрохимический потенциал важен в промышленных применениях, особенно для эффективных систем хранения, таких как батареи, суперконденсаторы и топливные элементы. Они использованы для многочисленных применений освещения, для компьютеров, бесшнуровых инструментов, аварийного питания и освещения, кораблей и воздушных суден, станций дистанционного контроля, игрушек, ракет, спутников, слуховых аппаратов, портативных приборов связи, электротранспортов, космического корабля, электроники в общем.

Мы используем электрохимические виды энергии для следующих основных преимуществ применения:

  1. Электрохимическая энергия обеспечивает очень эффективную систему накопления.
  2. Электротехника подходит для запуска, освещения и зажигания в многочисленных приборах.
  3. Электрохимические источники имеют дополнительные преимущества применения для выравнивания пиковых нагрузок.

Электромагнитная и световая

Электромагнитная представляет вид энергии в виде поперечных магнитных и электрических волн.
Свет – это лучи электромагнитных волн или излучение в видимой части электромагнитного спектра. Свет также можно рассматривать как фотоны или частицы. Слово “фотон “происходит от слова ”фото“, что означает “свет”. Электромагнитная энергия обычно относится к системам, которые передают электрическую энергию по беспроводной сети.
Электромагнитная энергия была великим открытием девятнадцатого века, областями применения которой являются радиоволны, рентгеновские и гамма-лучи.

И вот некоторые из применений в нашей повседневной деятельности.

Солнце передает лучистую энергию на нашу Землю в виде инфракрасной области спектра, видимого света и ультрафиолетовых лучей. Лампочки передают световые лучиэнергию нашим глазам в виде видимого света.
Микроволновые печи используют электромагнитную для приготовления пищи. А радиоволны передают информацию на наши радиоприемники и телевизоры также с помощью электромагнитной энергии. Принцип работы УЗИ аппарата также основан на применении электромагнитных волн.

Мы используем электромагнитные виды энергии для следующих основных применений:

  1. Электромагнитная чиста и применима во многих инструментах.
  2. С помощью электромагнитных волн легко произвести электричество, и это может быть сделано в крайне на крайне малых масштабах, таких как микрочипы.
  3. В отличие от ядерных ресурсов не содержит радиоактивных компонентов, которые могут быть опасны.

Звуковая или акустическая

Звуковая или акустическая энергия – это механическая волновая, производимая вибрирующими объектами, связанная с вибрационным движением молекул воздуха и находящаяся в пределах слышащих частот. Телефон и мобильные устройства преобразуют звуковую в электрическую и обратно в звуковую для нашего повседневного использования.
Ультразвуковое исследование использует высокочастотные радиоволны для того чтобы выполнять ультразвуковой контроль (например, обнаружить отказы и утечки в промышленных баках) или сделать измерения толщины.

Мы используем звуковые виды энергии для следующих преимуществ применения:

  1. Каждый день мы используем звук, чтобы слышать.
  2. Используется для ультразвуковых исследований.

Ядерная

Ядерная энергия генерируется за счет использования урана (природного металла, который добывается во всем мире) посредством ядерных реакций.
Ядерная энергия создается посредством химических реакций, которые включают расщепление или слияние атомов ядер вместе.
Процесс расщепления ядра атома называется делением, а процесс слияния ядер атомов называется слиянием, которое высвобождает энергию. Имеет высокую плотность энергии. Преобразование ядерных масс в виды энергии известно через популярное химическое уравнение, открытое Эйнштейном:
E = mc 2 , где E – количество выделяемой энергии, m – масса ядер, c-величина скорости света.

Мы используем ядерные виды энергии для следующих применений:

  1. Ядерная имеет очень высокое содержание плотности энергии и использует относительно гораздо меньше топлива в электрогенерирующих электростанциях.
  2. Это чистая энергия, которая также производит меньше отходов, и не производит углекислый газ или дым, поэтому не способствует парниковому эффекту на Земле.

Энергопечь

На сегодняшний день энергопечь — апофеоз применения ТЭМ в быту. Это заводское изделие, по сути дела топка-«буржуйка», для любого вида твёрдого топлива с интегрированным теплоэлектрическим модулем. Идеальный вариант для охотничьих домиков, дач, отдалённых зимовок и вообще любого вида жизни вдали от цивилизации. Рассчитана на автономное использование (без периферических теплоотводов), имеет только очаг и дымоход. Предусматривает приготовление пищи. На эту печь устанавливают самые мощные элементы Пельтье-Зеебека.

Выходная мощность25–50 Вт
Выходное напряжение12 В
Объём топки30–60 литров
Вес30–60 кг
Тепловая мощность4–6 кВт
СтабилизаторДа
Заводские разъёмыДа
Защита от перегреваДа
Цена23000–40000 руб.

Хотя печь и переносная, безусловно, это «супертяжёлая весовая категория» среди бытовых приборов. Однако и спектр задач у энергопечи довольно широк — она может заряжать даже автомобильные аккумуляторы, освещать LED лампами целые комнаты. Ей найдётся место в экспедиционном обозе и в охотничьем вездеходе, в техническом помещении и на даче. Иными словами, в этом случае источник тепла у нас всегда с собой, осталось найти топливо.

В своей нише энергопечь незаменима, хотя и немного настораживает заявленный производителем срок службы — 10 лет. Следует отметить, что, как и в термогенераторе, есть возможность профилактической (или аварийной) замены всех деталей вплоть до корпуса.

Термоэлектрические модули — крайне занятные объекты. Помимо описанных методов применения их также используют для кондиционирования воды и воздуха. При этом на такой же элемент подаётся постоянный ток и он работает «в обратную сторону» — охлаждает воздух. Эта технология с успехом применяется в автомобильных кондиционерах и кулерах для воды, в автомобилестроении и при производстве микропроцессоров. Мы опишем эти устройства в следующей статье.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector