Dbo24.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощность электрического тока

При движении заряда по проводнику поле выполняет над ним работу. Величина характеризуется напряжением, в отличие от напряженности в свободном пространстве. Заряды двигаются в сторону убывания потенциалов, для поддержания процесса требуется источник энергии. Напряжение численно равно работе поля при перемещении на участке единичного заряда (1 Кл). В ходе взаимодействий электрическая энергия переходит в другие виды. Поэтому необходим ввод универсальной единицы, физической свободно конвертируемой валюты. В организме мерой выступает АТФ, электричестве — работа поля.

На схеме момент превращения энергии отображается в виде источников ЭДС. Если у генераторов направлены в одну сторону, у потребителя – обязательно в другую. Наглядным фактом отражается процесс расхода мощности, отбора у источников энергии. ЭДС несет обратный знак, часто называется противо-ЭДС. Избегайте путать понятие с явлением, возникающим в индуктивностях при выключении питания. Противо-ЭДС означает переход электрической энергии в химическую, механическую, световую.

Потребитель хочет выполнить работу за некоторую единицу времени. Очевидно, газонокосильщик не намерен ждать зимы, надеется управиться к обеду. Мощность источника должна обеспечить заданную скорость выполнения. Работу осуществляет электрический ток, следовательно, понятие также относится. Мощность бывает активной, реактивной, полезной и мощностью потерь. Участки, обозначаемые физическими схемами сопротивлениями, на практике вредны, являются издержками. На резисторах проводников выделяется тепло, эффект Джоуля-Ленца ведет к лишнему расходу мощности. Исключением назовем нагревательные приборы, где явление желательно.

Полезная работа на физических схемах обозначается противо-ЭДС (обычный источник с обратным генератору направлением). Для мощности имеется несколько аналитических выражений. Иногда удобно использовать одно, в других случаях – иное (см. рис.):

Выражения мощности тока

  1. Мощность – скорость выполнения работы.
  2. Мощность равна произведению напряжения на ток.
  3. Мощность, затрачиваемая на тепловое действие, равна произведению сопротивления на квадрат тока.
  4. Мощность, затрачиваемая на тепловое действие, равна отношению квадрата напряжения к сопротивлению.

Запасшемуся токовыми клещами проще использовать вторую формулу. Вне зависимости от характера нагрузки посчитаем мощность. Только активную. Мощность определена многими факторами, включая температуру. Под номинальным для прибора значением понимаем, развиваемое в установившемся режиме. Для нагревателей следует применять третью, четвертую формулу. Мощность зависит целиком и полностью от параметров питающей сети. Предназначенные для работы со 110 вольт переменного тока в европейских условиях быстро сгорят.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U 2 /R

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I 2 *R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Как рассчитать электрическую мощность в быту

Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.

Отсюда получим формулы для расчета мощности (P):

  • U*I;
  • I2*R;
  • U*I*cos(фи).

В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.

Мощность электрического тока. Виды и работа. Особенности

Мощность электрического тока — это количество работы, которая выполняется за определенный период. Так как работа представляет параметр изменения энергии, то мощность можно назвать характеристикой скорости передачи либо преобразования электроэнергии. С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы. Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.

Читать еще:  Ремонт термоэлектрических преобразователей

Мощность электрического прибора имеет важнейшее значение, ведь данный показатель используется не только для расчета электрической проводки, автоматов и предохранителей, но и для решения других задач. Чем мощность электрического прибора будет больше, тем за более короткое время он сможет осуществить необходимую работу. Если сравнить между собой электрическую плитку, тепловую электропушку или электрокамин, то у них у всех разные показатели мощности. То есть они будут обогревать площадь помещения за совершенно разное время.

Виды
Мощность электрического тока также может быть вычислена по формуле:

P=A/t, которая характеризует интенсивность передачи электроэнергии, то есть работа, совершаемая током по перемещению зарядов за определенный период времени.

Здесь A – это работа, t — время, за которое работа была выполнена.

Мощность может быть двух видов: реактивной и активной.

При активной мощности осуществляется преобразование мощности электротока в энергию движения, тепла, света и иные виды. Данный перевод тока в указанные виды невозможно выполнить обратно. Активная мощность измеряется в ваттах. Один ватт равняется один Вольт умноженный на один ампер. Для бытового и производственного применения задействуются показатели на порядок больших значений: это мегаватты в киловатты.

Реактивная мощность электрического тока представляет электронагрузку, создаваемую в приборах посредством емкостной и (или) индуктивной нагрузкой.

В случае переменного тока, указанный параметр характеризуется формулой:

Q=UIsinφ

Здесь синус φ выражается сдвигом фаз, который образуется между снижением напряжения и действующим электротоком. Значение угла может находиться в пределах от 0 до 90 градусов или от 0 до -90 градусов.

Параметр Q характеризует реактивную мощность, ее можно измерить в вольт-амперах. При помощи указанной формулы можно быстро определить мощность электротока.

Реактивные и активные показатели мощности можно продемонстрировать на обычном примере: Прибор может одновременно иметь нагревающие элементы: электрический двигатель и ТЭН. На изготовление ТЭНов применяется материал, который обладает большим сопротивлением, вследствие чего при прохождении по нему тока, электроэнергия становится тепловой. В данном случае довольно-таки точно характеризуется активная мощность электротока. Если брать за основу электродвигатель то внутри него располагается обмотка из меди, которая обладает индуктивностью, что, как правило, также вызывает эффект самоиндукции.

Эффект самоиндукции обеспечивает некоторое возвращение электроэнергии непосредственно в электросеть. Данную энергию можно охарактеризовать определенным смещением в показателях по электротоку и напряжению, что приводит к нежелательным последствиям на сеть в качестве определенных перегрузок. Подобными показателями выделяются и конденсаторы вследствие собственной емкости в момент, когда весь собранный заряд направляется обратно.

В данном случае происходит смещение тока и напряжения, но в обратном перемещении. Энергия индуктивности и емкости, которые смещаются по фазе относительно параметров электрической сети и называется реактивной электромощностью. Именно обратный эффект к сдвигу фазы позволяет осуществить компенсирование мощности реактивного параметра. В результате повышается качество и эффективность электрического снабжения.

Полная мощность электрического тока характеризуется величиной, которая соответствует произведению тока и напряжения и связана с активной и реактивной мощностью следующим уравнением:

S=˅P2+Q2

Где S – полная мощность, вычисляемая корнем из произведений квадратов активной и реактивной мощностей.

Для простоты восприятия активная мощность есть там, где присутствует активная нагрузка, к примеру, спиральные нагреватели, сопротивление проводов и тому подобное. Реактивная мощность наблюдается там, где имеется реактивная нагрузка, то есть элементы индуктивности и емкости, к примеру, конденсаторы.

Принцип действия

Когда заряд движется по проводнику, то электромагнитное поле выполняет над ним работу. Данная величина характеризуется напряжением. Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.

Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения. Полученный ток под высоким напряжением, иногда достигающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.

Применение
Одним из основных элементов электроцепи является приемник электроэнергии. Именно электрические приемники служат для преобразования электроэнергии в другие виды энергии:
  • Механическую: электрические двигатели и магниты.
  • Тепловую: агрегаты для сварки, электрические плитки, печки для выпечки хлеба, керамические печи и тому подобное;
  • Световую: лампочки накаливания, светодиодные, неоновые лампы и так далее.
  • Химическую: гальванические ванны и тому подобное.

Указанные преобразования возможны лишь в том случае, если ток проходит через сопротивление необходимого уровня. То есть при перемещении зарядов по проводнику наблюдается потеря энергии, что как раз и вызвано наличием сопротивления. Если рассматривать это дело на атомарном уровне, то электроны сталкиваются с ионами кристаллической решетки. Это приводит к возбуждению и теп­ловому движению, вследствие чего происходит потеря энергии.

Особенности

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу, то есть за определенное время. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Читать еще:  Основные отличия пеноблока от газоблока

Поэтому так важно знать мощности электрических приборов, чтобы правильно подобрать сечение и материал проводов или не допускать одновременного включения в сеть приборов, имеющих большую мощность.

В качества примера можно привести следующие показатели:
  • Сетевой роутер требует 10-20 Вт.
  • Бытовой сварочный аппарат имеет мощность 1500-5500 Вт.
  • Стиральная машина потребляет мощность 350-2000 Вт.
  • Электрическая плитка имеет мощность 1000-2000 Вт.
  • Холодильник бытовой потребляет мощность 15-700 Вт.
  • Монитор жидкокристаллический имеет мощность 2-40 Вт.
  • Монитор с электролучевой трубкой потребляет 15-200 Вт.
  • Системный блок ПК потребляет 100-1200 Вт.
  • Электрический пылесос имеет мощность 100-3000 Вт.
  • Лампа накаливания бытовая – 25-200 Вт.
  • Электрический утюг – 300-2000 Вт.
Интересные особенности

Мощность электрического тока раньше благодаря Джеймсу Уатту измерялась в лошадиных силах. Однако в конце девятнадцатого века было решено присвоить мощности название Ватт, чтобы увековечить имя известного ученого и изобретателя. На тот период это случилось впервые, когда единице измерения присвоили имя ученого. Именно с этого времени пошла традиция присвоения имен ученых единицам измерения.

Мощность электрического тока молнии составляет порядка один ТераВатт, при этом происходит ее преобразование в световую и тепловую энергию. Температура внутри молнии при этом составляет 25 тысяч градусов. Молния способна ударять в одно и то же место. А согласно статистике молния попадает в мужчин примерно в 5 раз больше, чем в представителей женского пола.

  • Что такое реактивная (бесполезная) мощность – ситуация, когда ток отстаёт или опережает напряжение, т.е. когда напряжение достигло пика, а ток равен нулю и наоборот;
  • Откуда появляется реактивная мощность — в основном из-за электродвигателей и трансформаторов (этот пункт Вам еще не понятен, если вы новичок, подписывайтесь на блог и ждите статью про катушку индуктивности);
  • Полезна ли реактивная мощность – она бесполезна и не производит никакой полезной работы, она лишь греет провода, поэтому чтобы уменьшить сечение кабеля, нам надо компенсировать реактивную составляющую. Также заводы оплачивают полную мощность, поэтому им надо компенсировать реактивную составляющую;
  • Как компенсируют реактивную мощность – к сети подключают установки для компенсации реактивной мощности;
  • Из-за чего возникает реактивная составляющая — в первую очередь электродвигатели, трансформаторы;

Ну вот и всё! Подписывайтесь и следите за обновлениями блога!

Виды электрических мощностей

Существует энергия, генерируемая некоторыми механизмами для создания электромагнитного и электрического поля, которая им необходима для функционирования, — это реактивная составляющая нагрузки. С другой стороны, активная составляющая показывает способность агрегата преобразовать полученную энергию в механическую работу или тепло.

Этот полезный эффект называется активной мощностью и измеряется в кВтч.

Приемники, образованные чистыми резисторами: нагревательные приборы, лампы накаливания и другие, обладают исключительно этим типом нагрузки.

Обратите внимание! Коэффициент мощности относится к активному и кажущемуся энергопотреблению установки. Кажущаяся энергия в свою очередь зависит от активной и реактивной энергии. При одинаковом потреблении активной нагрузки, чем выше потребление реактивной составляющей, тем ниже коэффициент.

Активная мощность

Активная — реальная или истинная мощность (Pa) выполняет фактическую работу в нагрузке и выражается в Вт.

Для однофазной цепи:

Pa = I*U* cosφ = UI PF

  • φ= фазовый угол;
  • PF = cosφ -коэффициент нагрузки.

Pa = 3* U* I* cosφ = 1,732 *U*I* PF

Реактивная мощность

Реактивная мощность (Pr) присутствует у электродвигателей, трансформаторов и устройств с реактивными сопротивлениями и индуктивностью. Эти устройства, как правило, индуктивные, поглощают энергию из сети, создавая магнитные поля, и возвращают ее, при смене направления синусоиды. При таком обмене энергией возникает дополнительное потребление, которое не способно быть использовано некоторыми приемниками. Этот вид называется реактивной энергией и измеряется в кВАр. Она вызывает перегрузку в линиях, трансформаторах и генераторах.

Для однофазной цепи:

Реактивная мощность

Во многих отношениях реактивную мощность можно рассматривать, как пену на бокале пива. Покупатель платит бармену за полный стакан пива, но выпивает только само пиво, которое всегда меньше.

Основным преимуществом использования распределения электроэнергии переменного тока является то, что уровень напряжения питания можно изменять с помощью трансформаторов, но не все электрооборудование потребляет реактивную мощность, которая занимает часть нагрузки на линиях электропередач.

В то время, как реальная или активная мощность — это энергия, подаваемая для работы двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения, помогая тем самым эффективно перемещать энергию через энергосистему по линиям электропередач.

Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных приборов. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, низкую освещенность шин или перегрев асинхронных двигателей.

Если потребляемая мощность больше, чем потребляемая с помощью передающих линий, ток, потребляемый от линий питания, увеличивается до такого высокого уровня, что вызывает резкое падение напряжения на стороне приемника. Если низкое напряжение будет продолжать падать — это приведет к отключению генераторирующих блоков, перегреву двигателей и выходу из строя другого оборудования.

Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку путем помещения реактивных катушек индуктивности или реакторов в линии электропередачи. Мощность этих реакторов зависит от количества видимой мощности, которая должна быть подана.

Полная мощность

Полная мощность — это энергия, подаваемая от поставщика в электросеть, для покрытия активной и реактивной составляющих.

Полная мощность

Она рассчитывается по формуле:

Где: S — подача питания в цепь, В⋅А.

Кажущаяся EP будет измеряться в вольт-амперах (В⋅А) — напряжение системы, умноженное на текущий ток. Это комплексное значение, равное векторной сумме активной и реактивной энергии.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ ( R_1 ) ​ в четыре раза меньше сопротивления резистора ​ ( R_2 ) ​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

Читать еще:  Основные виды изоляции

4. Сопротивление резистора ​ ( R_1 ) ​ в 3 раза больше сопротивления резистора ​ ( R_2 ) ​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ ( A_1 ) ​ и ​ ( A_2 ) ​ в этих проводниках за одно и то же время.

1) ​ ( A_1=A_2 ) ​
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) ​ и ​ ( A_2 ) в этих проводниках за одно и то же время.

1) ​ ( A_1=A_2 ) ​
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряется

Количественный мощностной показатель измеряется несколькими способами с помощью разных приборов:

  • ваттметры, варметры для прямых замеров;
  • амперметры и вольтметры для косвенных замеров;
  • фазометр, позволяющий оценить влияние реактивной составляющей.

Прямые замеры

Служат для прямого измерения активного и реактивного мощностного показателя. Все ваттметры и варметры делятся на:

  1. Аналоговые. Существуют стрелочные приборы и с самопишущими устройствами. На них отображается активная мощностная величина. Состоят из неподвижной катушки, включенной в цепь последовательно, и подвижной с параллельным подключением. Стрелка отклоняется от взаимного влияния создаваемых магнитных полей;
  2. Цифровые. Содержат микропроцессоры, вычисляющие значения активной и реактивной составляющих на основе измерений тока и напряжения.

Существуют трехфазные и однофазные приборы, многофункциональные ваттметры для замеров других параметров: частоты, силы тока, напряжения.

Косвенные замеры

При косвенных замерах в цепь подключается амперметр и вольтметр, снимаются их показания, затем, подставляя их в формулическое выражение, вычисляется количественный мощностной показатель.

Фазометры

Замерить коэффициент, на который умножается активная мощность, cos φ, можно с помощью фазометра, что позволяет оценить влияние реактивного компонента.

Аналоговое устройство работает по тому же принципу, что и идентичный ваттметр. Только шкала проградуирована в значениях cos φ. Подключение прибора производится к одним клеммам последовательно, к другим –параллельно, чтобы измерять напряжение и электроток. В трехфазных устройствах надо подсоединить все фазы.

Высокоточные цифровые приборы содержат детекторы, непосредственно сравнивающие фазы, и микропроцессоры, обрабатывающие информацию.

Фазометры нашли широкое применение при регулировании работы генераторов и синхронных электродвигателей:

  1. У синхронного электродвигателя cos φ зависит от возбуждающего тока. При регулировании его функционирования в режиме отдачи реактивной составляющей, чтобы уменьшить ее негативное влияние, используют фазометр;
  2. В генераторах применяется ручное регулирование cos φ с целью поддержания стабильности его параметров в пусковых режимах. Если нагрузка индуктивная, и cos φ в индуктивной зоне шкалы снижается, возможен опасный нагрев статорной обмотки. При нахождении cos φ в емкостной зоне генератор работает на потребление тока, что недопустимо.

Регулирование cos φ

Если cos φ понижается, то в сети увеличиваются потери, а полезная часть работы по преобразованию электроэнергии уменьшается. Соответственно, растет потребление из сети. При этом напряжение падает.

Важно! Для обеспечения наилучшего соотношения параметров электросети необходимо поддерживать cos φ на уровне 0,95 в индуктивной части шкалы фазометра.

Для компенсации индуктивной нагрузки, уменьшающей cos φ, на электрических подстанциях устанавливают конденсаторные батареи. Когда индуктивная составляющая падает значительно, батареи отключаются. Иногда это реализуется в автоматическом режиме. Отслеживание cos φ производится по фазометру.

Расчеты разных видов мощности показывают, насколько работа сети надежна и эффективна, позволяют оценить потери в количественном выражении.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector