Dbo24.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Понятие атом Строение атома и атомного ядра

§ 1. Основные сведения о строении атома

Схема эволюции представлений о строении атома. Понятие «атом» пришло к нам из античных времён, но первоначальный смысл, который вкладывали в это понятие древние греки, совершенно изменился. Как вы помните, в переводе с греческого «атом» означает «неделимый». Однако большое число экспериментальных фактов свидетельствует о том, что атом имеет сложное строение и состоит из положительно и отрицательно заряженных частиц.

К таким фактам относятся, например, явления электризации, электрической проводимости и некоторые другие. Некоторые сведения о строении атома вы получили из школьных курсов физики и химии, а также из курса естествознания за 10 класс. Ещё раз рассмотрим эволюцию представлений о строении атома, представив её в виде схемы.

Модели атомов Дж. Томсона и Э. Резерфорда. В 1904 г. в работе «О структуре атома» Дж. Томсон (1856—1940) дал описание своей модели, получившей образное название «пудинг с изюмом». В этой модели атом уподоблен сферической капле («пудингу»), имеющей положительный заряд (рис. 1, а). Внутрь сферы вкраплены, как изюм в пудинге, отрицательно заряженные электроны. Электроны совершают колебательные движения, благодаря которым атом излучает электромагнитную энергию. В целом атом электронейтрал ен. Модель атома Дж. Томсона не была подтверждена экспериментальными фактами и осталась гипотезой.

Рис. 1. Модели строения атома: а — Дж. Томсона; б — Э. Резерфорда

В 1907 г. Э. Резерфорд (1871—1937), облучая тонкую золотую фольгу быстрыми альфа-частицами (ядрами атома гелия), заметил, что большая часть частиц проходит сквозь фольгу, не отклоняясь, значительно меньшая часть отклоняется от первоначальной траектории на небольшие углы и совсем малая часть отклоняется на углы от 90 до 180°.

Исходя из результатов проделанного опыта, Резерфорд предложил планетарную модель атома, согласно которой атом состоит из небольшого, но массивного положительно заряженного ядра и лёгких электронов, которые движутся вокруг него по замкнутым орбитам (рис. 1, б), подобно тому как движутся планеты вокруг Солнца.

Объясним результаты опыта Резерфорда, используя планетарную модель строения атома. Альфа-частицы, которые прошли сквозь фольгу не отклоняясь, попали в пространство между ядром и электронами. Поскольку размеры ядра и электрона по сравнению с размером атома малы, таких частиц оказалось большинство. Те альфа-частицы, которые испытали столкновение с электронами, отклонились на небольшие углы, ну а те, что столкнулись с ядром, — отклонились на углы от 90 до 180°. Хорошо согласуясь с опытом по рассеянию альфа-частиц, модель Резерфорда, тем не менее, не могла объяснить процессы излучения и поглощения энергии атомом, а также его устойчивость. Ведь если электроны при своём движении излучают энергию, то в конце концов они должны упасть на ядро и атом тем самым должен прекратить своё существование. Однако этого не происходит.

Постулаты Бора. В 1913 г. Н. Бор (1885—1962) предложил квантовую модель строения атома, основой которой послужили разработанные им постулаты:

1-й постулат — электрон движется вокруг ядра по строго определённым замкнутым стационарным орбитам в соответствии с «разрешёнными» значениями энергии E1, E2, . En, при этом энергия не поглощается и не излучается;

2-й постулат — электрон переходит из одного «разрешённого» энергетического состояния в другое, что сопровождается излучением или поглощением кванта энергии.

Н. Бор внёс квантовые представления в строение атома, но использовал при этом традиционные классические понятия механики, рассматривая электрон как частицу, движущуюся со строго определёнными скоростями по строго определённым траекториям. Его теория была построена на противоречиях.

Протонно-нейтронная теория ядра. В 1932 г. независимо друг от друга российским физиком Д. Иваненко (1904—1994) и немецким физиком В. Гейзенбергом (1901—1976) была разработана протоннонейтронная теория ядра, согласно которой ядра атомов состоят из протонов и нейтронов (рис. 2).

Рис. 2. Схема строения атома

Атомное ядро каждого химического элемента состоит из строго определённого числа протонов Z (т. е. характеризуется определённым положительным зарядом), которое соответствует порядковому номеру химического элемента в Периодической системе химических элементов Д. И. Менделеева (1834—1907). Число нейтронов N в атомах одного и того же элемента может быть различным. Следовательно, различными будут и относительные атомные массы (A = Z + N) у этих атомов. Такие разновидности атомов называются изотопами.

Следовательно, химический элемент — это вид атомов с одинаковым зарядом ядра.

В природе, например, встречаются изотопы кислорода с массовыми числами 16, 17 и 18 ( 16 O, 17 O и 18 O); хлора — 35 Cl и 37 Cl, калия — 39 K и 40 K, аргона — 39 Ar и 40 Ar.

    Другого ничего в природе нет
    Ни здесь, ни там, в космических глубинах:
    Всё — от песчинок малых до планет —
    Из элементов состоит единых.

    В Периодической системе химических элементов Д. И. Менделеева под знаком химического элемента записывают среднее значение относительной атомной массы всех его природных изотопов с учётом их распространённости, поэтому это число дробное.

    Квантовая механика характеризует частицы микромира: элементарные частицы (протоны, нейтроны, электроны), а также построенные из них атомные ядра, атомы и молекулы — как объекты с двойственной природой, т. е. рассматривает их и как частицы, и как волны. Такие двойственные свойства частиц микромира называют кор-пуску лярно-волновым дуализом.

    Электронная оболочка атома. Энергетический уровень электронов. Электронное облако. Строение атомного ядра и изменения, происходящие с ним, — предмет изучения ядерной физики. Для естествознания, и в первую очередь для химии, больший интерес представляет строение электронной оболочки атома.

    Число электронов в атоме как электронейтральной частице равно числу протонов в ядре, т. е. соответствует порядковому номеру химического элемента.

    Важнейшей характеристикой электрона является энергия его связи с атомом.

    Наименьшей энергией обладают электроны 1-го энергетического уровня, наиболее близкого к атомному ядру. По сравнению с ними электроны последующих уровней будут иметь больший запас энергии. Таким образом, самой большой энергией обладают электроны внешнего уровня, которые именно поэтому и наименее прочно связаны с ядром атома.

    Электрон в атоме не имеет траектории движения, т. е. можно говорить лишь о вероятности нахождения его в пространстве. Он может находиться в любой части пространства, окружающего ядро. Совокупность различных положений электрона рассматривают как электронное облако с определённой плотностью отрицательного заряда.

    Напомним, что число энергетических уровней (электронных слоёв) в атоме соответствует номеру периода в таблице Д. И. Менделеева, в котором располагается химический элемент, — у атомов элементов 1-го периода — один уровень, 2-го периода — два, 7-го периода — семь.

    В следующем параграфе будет подробнее рассмотрено, как связаны между собой строение атома и периодический закон Менделеева.

    Теперь вы знаете

    • как менялись представления о строении атома с развитием физики
    • модели атомов Дж. Томсона и Э. Резерфорда
    • постулаты Н. Бора
    • в чём заключается протонно-нейтронная теория ядра
    • что такое электронная оболочка атома, энергетический уровень электронов, электронное облако

    Теперь вы можете

    • объяснить, в чём разница моделей атома Дж. Томсона, Э. Резерфорда и Н. Бора
    • сформулировать, что такое атом, изотоп, химический элемент и чем они отличаются друг от друга
    • определить число энергетических уровней в атоме по номеру периода в таблице Д. И. Менделеева, в котором находится данный химический элемент

    Выполните задания

    1. Назовите модели сложного строения атома. Охарактеризуйте их достоинства и недостатки.
    2. Из курса естествознания 10 класса вспомните, как физические явления интерференции и дифракции доказывают двойственную природу частиц микромира.
    3. Объясните, почему свойства различных изотопов одного и того же элемента идентичны, хотя их относительная атомная масса различна.
    4. Дайте определения понятий: «электронная оболочка атома», «энергетический уровень электрона», «электронное облако (орбиталь)».
    5. Запишите схемы распределения электронов по энергетическим уровням для атомов элементов, имеющих в Периодической системе порядковые номера 6, 15, 20.
    6. Прочитайте отрывок из стихотворения В. Брюсова «Мир электрона» и проанализируйте его с точки зрения «физиков» и «лириков».

        Быть может, эти электроны —
        Миры, где пять материков,
        Искусства, званья, войны, троны
        И память сорока веков!

        Ещё, быть может, каждый атом —
        Вселенная, где сто планет;
        Там — всё, что здесь, в объёме сжатом,
        Но также то, чего здесь нет.

    Строение атома

    Сегодня мы будем путешествовать в микромир – мир атома. Даже если превратить нас в песчинку, то по сравнению с размером ядра атомов химических элементов, мы будем гигантами.

    Атом нельзя увидеть, невозможно потрогать, он на столько мал, что существует только в нашем воображении. До XIX века учёные оперировали только одной характеристикой атома – это его масса. Наука не оперировала понятиями, что ядро атома содержит более мелкие частицы. Почему элементы отличаются массой. Атом долгое время считали «неделимым». Но отличия в массе подвигли искать причину в строении.

    Как описать строение, то чего невозможно увидеть, а можно только представить. Ведь современные электронные микроскопы появились только в XX веке.

    Атом – как мельчайшая частица, известна ещё с древних времён. Древнегреческий философ Демокрит считал, что свойства веществ определяются определённым типом атома. Даже тонкая материя, душа, по его мнению, состоит из атомов. Так тела бывают в разных агрегатных состояниях, поэтому атомы металлов будут с зубцами, жидкости будут обладать гладкими, это будет причиной их текучести.

    Долгое время атом считали неделимым. Заглянув в словарь синонимов, можно увидеть пару синонимов для слова атом, неделимый, мельчайшая частица. Теория о неделимости существовала до XIX века, пока экспериментально не подтвердили, что ядро атома состоит из более мелких частиц. Но как они располагаются в атоме, как конфеты драже в кармашке, или по версии Томсона, который сравнивал электроны с изюминками, хаотично разбросанных в кексе. Учёный с Японии Хантаро Нагаока сравнил атом с загадочной планетой Сатурн, которая известна своим кольцом. Саму планету он сравнил с массивным ядром, а роль кольца отдал электронам.

    В конце XIX века, начале XX происходит стремительное развитие науки, открываются новые частицы α и β. Позже было установлено, что это ядро атома элемента Не и электроны.

    Английский физик Резерфорд сравнил атом с Солнечной системой. Солнце – это очень большая звезда, которая находится в центре. Масса Солнца занимает 99,86 % от массы всей Солнечной системы. Подобно планетам, электроны вращаются вокруг ядра, каждый из них занимает своё положение — орбиталь. Т.е. электроны – это оболочка атома.

    В ходе данных исследований было доказано, что атом представляет совокупность заряженных и нейтральных частичек.

    Анализируя размеры, важно запомнить, что радиус ядра атома, будет всегда значительно меньше радиуса всего атома. Этот факт объясняется тем, что частицы составляющие ядро более компактно упакованы, чем электроны.

    Строение атома

    История открытия. Демокрит. Начала атомистики

    Уже в древности философы задумывались, из чего же состоит природа вокруг них. Демокрит первым из античных ученых предположил, что все в мире состоит из крошечных неделимых частиц. Эту частицу он назвал атом, что в переводе с греческого означает «неделимый».

    К сожалению, возможности ученых в те времена были весьма ограничены. Каких-либо приборов, позволяющих исследовать строение вещества, у них не было. Но значение Демокрита в зарождении атомистики невозможно сбросить со счетов истории.

    Атомно-молекулярное учение. Строение атома

    Практически до середины XVIII века, пока М.В. Ломоносов не принес в химию количественные эксперименты, учение об атомах оставалось лишь прерогативой философских размышлений. Михаил Васильевич считал, что лишь знание физических законов поможет правильно истолковать результаты химических опытов.

    В своих исследованиях ученый выделил в веществе крупные частицы — «корпускулы», и мелкие — «элементы», или как мы называем их сейчас — атомы.

    Ломоносов считал, что каждая молекула по своему составу идентична всему веществу, а также, что различные по химическому строению элементы имеют и разные по составу молекулы. Ученый предполагал, что вещества имеют особенности не только из-за отличий в составе молекул, но и благодаря различному расположению атомов в молекуле.

    Следующий шаг в изучении атомов сделал английский естествоиспытатель Джон Дальтон. Проводя различные эксперименты с растворением газов в жидкостях, ученый открыл главное физическое качество атомов: эти мельчайшие частицы имеют вес. Но поскольку атом до сих пор никто не видел, Дальтон назвал вес частицы относительным. Он установил, что самым легким элементом является водород и предложил его вес принять за единицу.

    Открытие Дальтона стало прорывом в химии. Ведь теперь к любому химическому соединению можно было подойти с измерительным прибором. Это исследование позволило приблизиться к современной записи химических формул и уравнений. И именно Дальтон придумал первые обозначения для известных химических элементов.

    До конца XIX века, несмотря на все старания ученых, химическое строение атома по-прежнему оставалось лишь гипотезой.Ученым не хватало оборудования, чтобы постичь тайну мельчайшей частицы.

    Открытие Дальтона дало толчок дальнейшим опытам, в ходе которых ученые вычислили относительную атомную массу разнообразных химических элементов, что позволило их классифицировать, а Д.И.Менделееву – сформулировать периодический закон и представить научному миру Периодическую систему химических элементов.

    Протоны и нейтроны

    Обнаружение катодных лучей немецким ученым-физиком Юлиусом Плюккером в 1859 году и создание прототипа электронной трубки Ульямом Круксом в 1879 году положили новый виток исследованиям в атомистике.

    Однако потребовалось еще несколько десятков лет, чтобы строение атомов химических элементов приоткрыло свои тайны. на заре XX века в одном журнале появились две публикации, которые пытались объяснить структуру атома. Одна из публикаций принадлежала английскому ученому Д.Д. Томсону, автором другой был японский физик Хантаро Нагаока.

    Нагаока описал в статье так называемую «сатурнианскую» модель атома. Он думал, что атом по своей структуре напоминает планету Сатурн. В его центре находится массивное ядро с положительным зарядом, а электроны с отрицательными зарядами передвигаются вокруг ядра по орбитам. .

    При создании своей атомной структуры Нагаока использовал разработанную Максвеллом в 1856 году теорию устойчивости колец Сатурна. Японский ученый был убежден, что опираясь на «сатурнианскую» модель ядра в будущих исследованиях, можно прояснить все основные свойства материи.

    Исследователь ошибся, однако два постулата его теории впоследствии подтвердились:

    • ядро атома имеет значительную массу;
    • электростатические силы удерживают электроны на орбите (сходство с кольцами Сатурна, что удерживаются благодаря гравитационным силам).

    Томсон выдвинул гипотезу о том, что атом напоминает шарообразную, электронейтральную сферу диаметром около 10 –10 м, где положительный заряд равномерно распределен по всей структуре атома, а электроны хаотично расположены в этом поле. Поэтому, можно сказать, что атом напоминает микроскопическую булочку с изюмом.

    Опыты продолжались в разных странах. В лаборатории Резерфорда проходили испытания, которые смогли доказать, что в центре атома расположено крупное ядро с диаметром около —10 —15 м, в котором содержится более 99,95 % его массы, а заряд его положительный.

    Ученые продолжали исследования с катодным излучением, и выяснили, что масса ядра была примерно в два раза больше, чем масса всех протонов в нем. Опираясь на это знание, Резерфорд выдвинул гипотезу, что в ядре атома присутствует еще некая тяжелая частица, лишенная заряда. С биографией выдающегося ученого можно кратко ознакомиться в учебнике «Введение в естественно-научные предметы» , под редакцией А.Е. Гуревич.

    В 1932 году и Джеймс Чедвик обнаружил нейтрон — третий недостающий элемент атома.

    Атомное взаимодействие обеспечивает тесную связь протонам и нейтронам в ядре атома. Протоны и нейтроны имеют общее название — нуклоны. Ученые считают, что их характеристики достаточно подобны, чтобы отнести эти частицы к одному семейству, как биологи относят в один вид собак и волков.

    Казалось бы, вот оно – тайна ядра разгадана. Но нет, в современной физике считается, что нуклоны состоят из еще более мелких частиц, которые называют кварками, и кварковая модель является ведущей в современной науке.

    Эксперименты по исследованию атома и его ядра не прекращаются, и в 2010 году международная группа физиков при исследовании протонов в мюонном водороде установила, что размер радиуса протона меньше на 4%, чем считалось до этого.

    Так в фундаментальную физику ворвалась загадка протонного радиуса, почему измерение одной и той же величины в обычном и в мюонном водороде дает разные результаты — и, несмотря на усилия сотен специалистов, она до сих пор не решена.

    Изотопы

    Работая в лаборатории Резерфорда, Фредерик Содди экспериментально установил, что встречаются атомы одного химического элемента с различной атомной массой. А поскольку к этому времени уже было известно, что количество протонов для ядра постоянно, соответственно, отличались они количеством нейтронов.

    Содди предложил термин изотоп (от греческих слов изос — «равный» и топос — «место») для обозначения веществ, идентичных по химическим свойствам, но отличающихся атомной массой и определенными физическими свойствами.

    При графической записи изотоп выглядит как знак химического элемента, которому он соответствует. А что бы обозначить разницу, в массовом числе используют индекс слева вверху: ( 12 C, 222 Rn)

    Протий, дейтерий, и тритий — исторические собственные названия изотопов водорода.

    • стабильные (устойчивые);
    • нестабильные (радиоактивные).

    Электронное строение атома

    Исследование таинственного микромира продолжается. Изучение движения электронов и внутриатомных взаимодействий выделилось в отдельную область физики — квантовую механику. Главный постулат квантовой механики — все волны обладают свойствами частиц, а микрочастицы имеют волновую природу.

    В макромире физическое тело всегда находится в какой-то конкретной точке пространства. Даже если вы сфотографируете летящую муху и на фотографии она будет в виде черной полосы, вы все равно будете уверены, что в конкретный момент времени она была в определенном месте.

    В мире атома все иначе. Легкий подвижный электрон находится одновременно во всех точках околоядерного пространства. Если провести аналогию с макромиром, больше всего это напомнит неплотный клубок мягкой пушистой шерсти.

    И именно эта зона пространства, где существует вероятность встретить электрон, называется электронным облаком. Плотность электронного облака неравномерна.

    В электронном облаке выделяют зону, где вероятность встречи с электроном более 90% — эта область обозначена как атомная или электронная орбиталь.

    Все электроны в атоме обладают определенной энергией. Чтобы описать состояние электрона, ученые используют квантовые числа. Всего их четыре. Целое число n, которое определяет энергию электронов на конкретном энергетическом уровне, называют главным квантовым числом.

    На одной электронной оболочке находятся атомные орбитали с единым значением главного квантового числа n.

    У невозбужденного атома электроны расположены на орбиталях 4-х видов: s, p, d и f.

    Но почему нельзя было обозначить буквами по алфавиту a, b, c? Все не так просто, для обозначения атомных орбиталей ученые решили использовать начальные буквы от прилагательных, описывающих спектральные линии в атомных спектрах:

    • s (sharp) — резкая,
    • p (principal) — главная,
    • d (diffuse) — диффузная,
    • f (fundamental) — фундаментальная.

    Чтобы графически представить расположение электронов на уровнях и подуровнях атомной оболочки, ученые ввели электронные формулы. Это такие численно-буквенные комбинации, где подуровень обозначен строчной латинской литерой, а цифровой индекс вверху справа обозначает количество электронов на подуровне.

    Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электроны углерода расположены на двух энергетических уровнях, на внешнем энергетическом уровне у углерода выделяют два подуровня 2s и 2p, где находятся 4 электрона. Также используется графическая схема строения атома.

    Для наглядности строения атомной оболочки углерода и процессов в ней можно воспользоваться схемой , представленной на нашем ресурсе.

    Несмотря на свои способности быть одновременно в любой точке пространства, электроны при заполнении орбиталей соблюдают определенный порядок:

    • Принцип наименьшей энергии. Электроны занимают атомные орбитали от наименьшей энергии к наибольшей. Распределение подуровней по энергиям представлено рядом : 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, где от 1s до 7p — энергия увеличивается.
    • Принцип Паули — на одной орбитали помещается два электрона. Суммарное количество электронов в одном электронном слое или на одном электронном уровне равно 2n2.
    • Правило Хунда — прежде чем начать собираться в пары, электроны сначала в пределах подуровня по одному занимают вакантные орбитали.

    У этого правила есть еще одно мнемоническое название — правило троллейбуса. Расположение электронов напоминает рассадку в общественном транспорте. Если есть свободные места и человек входит один, он сядет на свободное сиденье, и только если нет свободных сидений, подсядет к кому-то на свободное место.

    Итак, подведем выводы, на которые ученым понадобилось более сотни лет опытов, исследований, научных дискуссий и даже трагедий.

    • Форма атома — сфера.
    • Ядро и электронная оболочка — составные структуры атома.
    • По электронной оболочке движутся электроны с отрицательным зарядом.
    • Масса ядра составляет основную часть массы атома, т.к. протон весит примерно в 2000 раз больше электрона.
    • Радиус атома приблизительно в 100000 раз больше чем радиус ядра.
    • Атомное ядро состоит из нуклонов: протонов (p+) и нейтронов (n0), которые состоят из кварков.
    • Количество протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в периодической системе элементов, т.е. N(p+) = Z
    • Количество электронов в нейтральном атоме равно количеству протонов в его ядре.
    • Массовое число представляет собой сумму протонов Z и нейтронов N и обозначается литерой А.
    • Если атом приобретает лишние электроны или теряет свои, то его заряд изменяется и он превращается в ион с положительным или отрицательным зарядом, что можно увидеть на иллюстрации в учебнике «Введение в естественно-научные предметы» , под редакцией А.Е. Гуревич.

    Чтобы проверить насколько хорошо усвоен материал, предлагаем вашему вниманию тест на тему «Строение атома» для 8-11 классов:

    1. Кто придумал название атом?
      • Архимед
      • Менделеев
      • Демокрит
      • Ломоносов
    2. Как называются частицы, из которых состоит ядро атома?
      • нуклоны
      • позитроны
      • феромоны
      • интерфероны
    3. На что, согласно теории Томсона, похож атом?
      • на пирожок с повидлом
      • на «Киевский» торт
      • на булочку с изюмом
      • на горшок с медом
    4. Какую форму имеет атом?
      • сферическую
      • цилиндрическую
      • кубическую
      • додекаэдрическую
    5. Как называется составная часть нуклона?
      • тверк
      • кварк
      • парк
      • трак
    6. Что не является изотопом водорода?
      • дейтерий
      • тритий
      • радий
      • протий
    7. Как называется атом, в котором число протонов не совпадает с числом электронов?
      • изотоп
      • ион
      • нуклон
      • борион
    8. Сколько электронов помещается на одной орбитали?
      • 3
      • 10
      • 2
      • 15
    9. Какая наука изучает движение электронов?
      • квантическая химия
      • механическая биология
      • коллоидная математика
      • квантовая механика
    10. Основная масса атома содержится?
      • в ядре
      • в электронах
      • в орбиталях
      • в протонах

    #ADVERTISING_INSERT#

    Ядерная модель атома (планетарная)

    Резерфорд бомбардировал α-частицами атомы тяжелых элементов (золото, серебро, медь и др.). α-частицы – это полностью ионизированные атомы гелия. Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию α-частицы. Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома.

    Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

    Этот результат был совершенно неожиданным даже для Резерфорда. Он находился в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад.

    Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома (планетарная):
    1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
    2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).
    3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.

    Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость. Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым. Ускоренно движущийся электрон по законам электродинамики должен терять энергию и приближаться к ядру. Как показывают расчеты, основанные на механике Ньютона и электродинамике Максвелла, электрон за ничтожное время должен упасть на ядро. Атом должен прекратить свое существование. В действительности ничего подобного не происходит. Атомы устойчивы и в невозбужденном состоянии могут существовать неограниченно долго, совершенно не излучая электромагнитные волны. Не согласующийся с опытом вывод о неизбежной гибели атома вследствие потери энергии на излучение — это результат применения законов классической физики к явлениям, происходящим внутри атома. Отсюда следует, что к явлениям атомных масштабов законы классической физики неприемлемы.

    Датским физик Нильс Бор (1885 — 1962) считал что поведение микрочастиц нельзя описывать теми же законами, что и макроскопических тел.
    Бор предположил, что величины характеризующие микромир, должны квантоваться, т.е. они могут принимать только определенные дискретные значения.
    Законы микромира — квантовые законы! Эти законы в начале 20 столетия еще не были установлены наукой. Бор сформулировал их в виде трех постулатов. дополняющих ( и «спасающих») атом Резерфорда. Его теория впоследствии привела к созданию стройной теории движения микрочастиц — квантовой механики.

    Первый постулат Бора гласит: атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия E. В стационарном состоянии атом не излучает.
    Согласно второму постулату Бора излучение света происходит при переходе атома из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией. Энергия излученного фотона равна разности энергий стационарных состояний.

    Состояние атомов

    В начале прошлого века, когда были запущены первые ускорители элементарных частиц, все теории, объяснявшие строение атомного ядра и самого атома, ждали экспериментальной проверки. К тому времени были уже досконально изучены взаимодействия альфа- и бета-лучей с атомами. Вплоть до 1917 года считалось, что атомы либо стабильны, либо радиоактивны. Стабильные атомы нельзя расщепить, распад радиоактивных ядер невозможно контролировать. Но Резерфорду удалось опровергнуть это мнение.

    Примеры решения задач

    ЗаданиеОпределите относительную атомную массу бора, если известно, что массовая доля изотопа 10 B равна 19,6%, а 11 В – 80,4%.
    РешениеИзотопы – это атомы одного и того же химического элемента, имеющие разные массовые числа (одинаковое число протонов, но разное – нейтронов). Средняя относительная масса изотопов рассчитывается по формуле:

    Рассчитываем среднюю относительную атомную массу бора:

    Ar(B) = (10 × 19,6 + 11 × 80,4)/100 = 10,8 а.е.м.

    ЗаданиеОхарактеризуйте квантовыми числами все электроны, которые находятся на 3p-подуровне.
    РешениеНа p-подуровне 3-го уровня находится шесть электронов:

    Их можно охарактеризовать следующими квантовыми числами:

    Более реалистичный атом

    Хотя рис. 1 примерно описывает архитектуру атома – электроны действительно находятся снаружи, а ядро, состоящее из протонов и нейтронов, в середине – он совершенно не передаёт реальную форму и суть атома, поскольку он выполнен не в масштабе, а мы живём в квантовом мире, в котором объекты ведут себя так, что их сложно нарисовать или представить.

    С проблемой масштаба можно разобраться, нарисовав более точное (хотя всё ещё несовершенное) изображение, рис. 2.


    Рис 2. Атом – по большей части пуст (серая область). По нему быстро движутся электроны (голубые точки, нарисованы не в масштабе, а гораздо больше). В центре находится тяжёлое ядро (красные и белые точки, нарисованы больше, чем в масштабе).

    Вот, что я попытался передать этим изображением. Во-первых, электроны очень, очень малы, настолько малы, что мы так и не смогли измерить их размер – может статься, что они точечные и не имеют размера, но они точно не больше, чем 1/100 000 000 от диаметра атома. Во-вторых, ядра (и протоны с нейтронами, их составляющие) также крайне малы, хотя они и больше, чем электроны. Их размер измерен, и он примерно в 10 000 – 100 000 раз меньше диаметра атома. Атом немного похож на деревню. Протоны и нейтроны в ядре – большие дома, находящиеся в центре деревни, а электроны – далеко разбросанные фермерские домики. На большей части сельской местности растут зерновые культуры и нет домов. И хотя территория, считающаяся частью деревни, может быть большой, реально занимаемая домами площадь очень мала.

    Но эта аналогия не полная, поскольку электроны, в отличие от фермерских домиков, очень быстро двигаются по серому региону на картинке и вокруг ядра со скоростями порядка 1% от скорости света. Покрываемая ими территория обычно не сферическая, а более сложной формы, кроме того не все электроны перемещаются по одной и той же территории.

    Но, как я вас предупреждал, рис. 2 тоже не точный. Во-первых, нужно было бы нарисовать ядро в тысячи раз меньше, а электроны – в миллионы раз меньше, только тогда их не было бы видно. Если бы атом был размером с вашу спальню, то его ядро было бы размером с пылинку. По сравнению со своими компонентами, атомы огромны! В каком-то смысле большую часть атома составляет пустота!

    Во-вторых, изображение не передаёт мутную природу квантовой механики. Уравнения квантовой механики описывают и предсказывают поведение молекул, атомов и субатомных частиц, и эти уравнения говорят нам, что у этих частиц могут быть очень странные и неинтуитивные свойства. Хотя электроны в каком-то смысле точечные (допустим, если вы захотите столкнуть два электрона друг с другом, то обнаружите, что можете сдвинуть их вместе на сколь угодно малое расстояние, и они ничем не выдадут своей внутренней структуры, если она вообще есть), есть возможность сделать так, что они, будучи оставленными в покое, будут распространяться как волна и заполнят всё серое пространство на рис. 2. Если это звучит странно, это не оттого, что вы чего-то не поняли: это странно и об этом тяжело думать. Я-то уж точно не знаю, как нарисовать атом, чтобы не вводить вас в заблуждение, и эксперты всё ещё спорят о том, как лучше всего о нём думать. Так что пока просто примите это как странный факт.

    Размер электрона слишком мал для измерения, и его масса настолько мала, что электрон может распространиться по всему атому. А вот у ядра есть вполне измеренный и известный размер, а его масса так велика – больше 99,9% массы всего атома – что оно вообще не распределяется в пространстве. Ядро сидит в середине серой области.

    Атом содержит дискретные энергетические уровни

    Поскольку электроны притягиваются к положительно заряженному ядру, оно должно постоянно удерживать их на своих орбиталях, как нам нужно постоянно держать яблоко в кулаке, чтобы преодолевать силу притяжения Земли. Ядро атома содержит огромный потенциал, при его расщеплении высвобождается гигантское количество энергии, которую человек использует для работы атомных реакторов и атомного оружия.

    Если мы отпустим яблоко, оно упадёт, так как уменьшится потенциал его энергии. Но если бы мы внесли яблоко на вершину здания, то увеличили бы потенциал энергии. Электроны тоже имеют потенциал собственной энергии, связанной с их положением. Противостоять притяжению ядра и переместить электрон на более отдалённую орбиту можно, только получив энергию от внешнего источника. В молекулах хлорофилла этим источником является энергия Солнца, она возбуждает электроны, и они отрываются от атома. Чем ближе электрон расположен к ядру, тем большая энергия ему понадобится для преодоления его силы тяжести.

    Перемещение электрона в обратном направлении – ближе к ядру – имеет обратный эффект: энергия не поглощается, а выделяется в виде лучистой энергии (тепла и света), и электрону остаётся меньше потенциальной энергии.

    Испускание света
    Автор: Volobuev Ilya, CC BY-SA 4.0

    Таким образом, электроны в атоме имеют дискретные энергетические уровни. Эти уровни называют квантами (сингулярные, квантовые), означающими наличие определённого количества энергии. Если использовать аналогию с яблоком снова, то представьте, что оно может быть поднято только до определённого уровня этажей здания. Каждый атом демонстрирует лестницу потенциала – дискретный набор орбиталей с разным запасом энергии, зависящим от расстояния от ядра.

    Диаграмма атома фтора, показывающая степень эффективного ядерного заряда.
    Автор: Effective_Nuclear_Charge.svg, CC0

    Электроны, которые расположены на одинаковом расстоянии от ядра, имеют одинаковую энергию, даже если они занимают разные орбитали. Говорят, что они занимают тот же энергетический уровень. Энергетические уровни обозначаются буквами К, L, М и т.д.

    Когда электроны передаются от одного атома другому, они сохраняют свой потенциал энергии. В организмах химическая энергия хранится в высокоэнергетических электронах, которые передаются от одного атома к другому в реакциях, включающих окисление и восстановление. Чаще эти процессы соединены в комбинацию окислительно-восстановительной реакции.

    Вам будет интересно

    Изучать природу – сложная задача. С давних времён люди говорили о «научном методе», используемом ими…

    Вспомните! Как доказать, что Земля шарообразна? Как развивались знания о форме Земли в процессе её…

    Почему Солнце встаёт на востоке, а садится на западе? В древности египтяне думали, что бог…

    Концентрация ионов водорода и гидроксид-ионов в растворе описывается терминами кислотность и щёлочность среды. При температуре…

    Слова «Дарвин» и «эволюция» стали почти синонимами.Теория эволюции Дарвина объясняет, каким образом в течение времени…

    Современная модель атома (квантовая модель)

    Во что мы верим сейчас? Из предыдущего раздела Основные понятия и законы химии, мы знаем, что Атом состоит из ядра и электронов. Атомное ядро имеет положительный заряд и состоит из протонов (Z) и нейтронов (N), а сумма масс протонов (Z) и нейтронов (N) атомного ядра называется массовым числом A = Z + N. Электроны атома расположены вокруг ядра на своих орбиталях.

    В таблице приведены характеристики частиц, входящих в атом

    Частица

    1,6·10×10 -19

    Атомы электронейтральны и число протонов совпадает с числом электронов, а вот число нейтронов может отличаться, тогда и появляются изотопы. Поскольку все элементы имеют несколько изотопов, то у каждого из них мы будем иметь среднюю атомную массу от масс всех изотопов, отсюда и возникает дробное значение атомной массы элемента в Периодической таблице Менделеева.

    Атомная орбиталь

    А что же такое атомная орбиталь, какова ее природа и как она выглядит? В результате титанического труда многих ученых, родилась новая теория строения атома – квантовая.

    Согласно этой теории электрон обладает корпускулярно-волновым дуализмом — является одновременно волной и частицей. Масса и заряд электрона – это свойства частицы, а способность к дифракции и интерференции — волновые.

    Уравнение де Бройля связывает эти два свойства электрона.

    где λ — длина волны, m— масса частицы, v— скорость частицы, h— постоянная Планка = 6,63·10 -34 Дж·с.

    Вскоре было выведено уравнение Шредингера, которое описывает электрон как волну:

    где E— полная энергия электрона, V-потенциальная энергия электрона, Ψ-квадратный корень от вероятности нахождения электрона в пространстве с координатами x, y и z (при этом начало координат — ядро).
    Уравнение предполагало, что точно предсказать местонахождение и траекторию движения электрона невозможно. Однако, можно найти вероятность нахождения электрона с помощью волновой функции. Теперь орбитали стали не двухмерными, как считалось ранее, а трехмерными телами.

    Что такое орбиталь?

    Орбиталь — это околоядерное пространство, в котором вероятность обнаружения электрона равна 95%.

    Т.о. можно описать 4 разных видов орбиталей, имеющих разную энергию и различную форму:

    • s-орбитали (имеют шарообразную форму),
    • p-орбитали (объемные восьмерки, гантелеобразная форма)
    • d- и f-орбитали (орбитали более сложной формы).

    Электроны в зависимости от занимаемой орбитали (подуровня), называют s-, p-, d- и f-электронами.

    Элементы, внешние электроны которых занимают только s-подуровень, называются s-элементами. Таким же образом называют p-элементы, d-элементы и f-элементы.

    Квантовые числа (n, l, ml, ms)

    Чтобы описанные раннее уравнения работали, нужны 4 переменные (4 квантовых числа). Опишем их:

    • Главное квантовое число, n. Его используют для описания уровня энергии электрона. Эта величина может принимать значения 1, 2, 3….до бесконечности и определяет номер периода. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем
    • Орбитальное квантовое число, l. Его используют для описания формы и типа орбитали. Ее возможные значения – это 0, 1, 2….(n-1). У сферической орбитали l=0, у гантелеобразной р-орбитали l=1, у странной формы d-орбитали l=2, у еще более странной формы f-орбитали l=3. Набор орбиталей с одинаковыми значениями n и l называется подуровнем. Подуровни содержат одинаковые по энергии орбитали.
    • Магнитное квантовое число, ml. Его используют для определения ориентации орбитали в пространстве. Принимает следующие целочисленные значения: от –l до l. Например, если l=2, то возможные величины ml: -2, -1, 0, 1, 2, т.е. существуют 5d-орбиталей. Аналогично существует 1 s-орбиталь, 3 p– орбитали и 7 f- орбиталей.
    • Спиновое квантовое число, ms. Его возможные величины +1/2 и -1/2. Известно, что орбиталь способна удерживать 2 электрона, поэтому возникла необходимость в четвертом квантовом числе ms.

    Принцип Паули гласит,

    Никакие два электрона в атоме не могут иметь одинаковый набор всех 4х квантовых чисел.

    Из принципа Паули вытекает, что на энергетическом уровне n может находиться не более чем 2n 2 электронов, на n 2 подуровнях.

    Существует правило, которое гласит, что электроны размещаются на уровнях и орбиталях не беспорядочно, а по принципу наименьшей энергии, т.е. чтобы сумма главного и орбитального квантовых чисел n+l была наименьшей.

    Это правило известно, как правило Клечковского. В случае, когда сумма равна, сначала идет заполнение энергетического уровня с наименьшим главным квантовым числом.

    Правила заполнения орбиталей

    Заполнение орбиталей происходит в следующем порядке:

    1s В пределах одного периода, находясь в основном состоянии, атом стремится к максимально возможному числу неспаренных электронов

    Зная, где находится электрон, мы можем написать его электронную конфигурацию (запись ряда орбиталей атома, на которых находятся электроны), которая составляется по образцу:

    n(тип орбитали) число электронов на этой орбитали

    Итак, заполнение орбиталей электронами происходит следующим образом:

    1. Главное квантовое число n должно быть минимальным;
    2. Внутри уровня электроны сначала занимают s- орбиталь, после p- и лишь затем d- и f- (при минимальном l );
    3. Заполнение орбиталей происходит по правилу Клечковского:(n + l) минимально;
    4. В пределах одного подуровня электроны располагаются согласно правилу Хунда так, чтобы их суммарный спин был максимален, т.е. количество неспаренных электронов должно быть максимальным.
    5. Согласно принципу Паули, в атоме все электроны обладают разным набором 4-х квантовых чисел и на энергетическом уровне n может находиться не более чем 2n 2 электронов.

    Возбужденное состояние атома

    При сообщении атому дополнительной энергии (действие температуры, рентгеновского или электромагнитного излучения), его электроны переходят в возбужденное состояние. При этом один или несколько электронов основного состояния переходят с занятых орбиталей на свободные. Предпочтительно возбуждаются электроны внешних оболочек, т.к. образующиеся состояния обладают наименьшей энергией.

    Это состояние очень неустойчиво и длится всего миллионные доли секунды.

    Валентные электроны (электроны, расположенные на внешнем уровне) способны выравнивать свою энергию и изменять форму орбиталей. Этот процесс называется гибридизацией атомных орбиталей и подробнее описан в разделе Метод валентных связей

    Примеры с решениями на составление электронных формул, распределение электронов по орбиталям в различных атомах Вы можете посмотреть в разделе Задачи по теме Основы строения атомов

    Читать еще:  Съемник для стягивания подшипников своими руками
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector